This report is intended to provide information for all water users. If received by an absentee landlord, a business or school, please share the information with tenants, employees or students. We will be happy to make additional copies of this report available for review by the public upon request.

If you would like additional information regarding water quality, please call Mr. Raymond Cordero, at (562) 567-9566.

Our City Council meets on the second and fourth Tuesday of each month at 6:30 p.m. in the City Council Chambers located in City Hall at 13230 Penn Street. Please feel free to participate in these meetings.

Este informe contiene información muy importante sobre su agua potable. Para más información, favor de contactar a Mr. Raymond Cordero. Teléfono: (562) 567-9566.

Sincerely,
Kyle Cason, PE, Director of Public Works

Water Conservation Tips

Water Conservation has become a new way of life. Water Conservation habits that are developed when there is ample snowpack will help sustain the water supply through growth and dry years. We suggest the continuation of the following water conservation habits:

- Water between 6 p.m. and 10 a.m.
- Adjust watering frequency according to the weather and season. Try to set sprinkler systems for multiples short cycles for each station and allow 30 to 60 minutes for the water to soak into the soil between cycles.
- Check and repair leaking pipes, hoses, sprinklers, and toilets.
- Install water-saving shower heads and toilets.
- Use a broom to clean driveways and sidewalks.

Cross Connections and You

Did you know common hazards in and around your house can contaminate your drinking water as well as your neighbors?

These hazards are known as cross-connections, and can result in contaminated water back- flowing into your home’s drinking supply without you even knowing.

TWO COMMON CROSS-CONNECTIONS ARE:

- Any hose is a cross-connection when left submerged in a swimming pool, laundry sink, or car wash bucket.
- To protect your water from these cross connections, make sure to have air vacuum breakers installed on each of your hose bibs.
- These simple devices are inexpensive and can be purchased from your local hardware store. They are easy to install; you just screw them on.
- Your in-ground irrigation system is also a cross-connection so make sure to do the following:
 1. Confirm your irrigation system has a back flow assembly device, if not, get one installed.
 2. Test the backflow prevention device annually.
 3. Turn in your results to the City of Whittier Water Department.

If you have any questions, please contact the Cross Connection Specialist at 562-567-9551.
Dear Customer,

The City of Whittier is committed to keeping you informed on the quality of your drinking water. This report is provided to you annually. It includes information describing where your drinking water comes from, the constituents found in your drinking water and how the water quality compares with the regulatory standards. During 2019, the drinking water provided by the City of Whittier to its service area complied with all Federal and State drinking water quality standards. We remain dedicated to providing you with a safe and reliable supply of high quality drinking water.

The information that follows represents only a fraction of the activity in which the City of Whittier engages to provide you, the consumer, a high level of confidence in the water that you drink. We, along with our State-certified laboratories, routinely test our water supplies for the entire range of elements that have the potential to degrade the quality of your water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the United States Environmental Protection Agency (USEPA) Safe Drinking Water Hotline (1-800-426-4791).

Some people, however, may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as people with cancer undergoing chemotherapy, people who have undergone organ transplants and people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections and are among those that may be more vulnerable. These people should seek advice about drinking water from their health care providers.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline (1-800-426-4791). Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. As noted below, the City of Whittier’s source water does not include surface water; therefore, monitoring for Cryptosporidium is not applicable to the City of Whittier.

What kind of contaminants might be found in drinking water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surfaces of the land or through the ground, it dissolves naturally-occurring substances and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in your water source include:

- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, and mining or farming.
- **Pesticides and herbicides** that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.
- **Radioactive contaminants**, that can be naturally-occurring or be the result of oil and gas productions and mining activities.

In order to ensure that tap water is safe to use, the USEPA and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in water provided by public water systems. The information that follows represents only a fraction of the activity in which the City of Whittier engages to provide you, the consumer, a high level of confidence in the water that you drink. We, along with our State-certified laboratories, routinely test our water supplies for the entire range of elements that have the potential to degrade the quality of your water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the United States Environmental Protection Agency (USEPA) Safe Drinking Water Hotline (1-800-426-4791).

What kind of contaminants might be found in drinking water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surfaces of the land or through the ground, it dissolves naturally-occurring substances and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in your water source include:

- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, and mining or farming.
- **Pesticides and herbicides** that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.
- **Radioactive contaminants**, that can be naturally-occurring or be the result of oil and gas productions and mining activities.

In order to ensure that tap water is safe to use, the USEPA and the State Water Resources Control Board, Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in water provided by public water systems. The information that follows represents only a fraction of the activity in which the City of Whittier engages to provide you, the consumer, a high level of confidence in the water that you drink. We, along with our State-certified laboratories, routinely test our water supplies for the entire range of elements that have the potential to degrade the quality of your water. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the United States Environmental Protection Agency (USEPA) Safe Drinking Water Hotline (1-800-426-4791).
What is in your drinking water?

The chart in this report shows the average and range of concentrations of the constituents tested in your drinking water during year 2019 or from the most recent tests. The State allows the City of Whittier to monitor for some contaminants less than once per year because the concentrations of these contaminants in groundwater do not change frequently. Some of our data, although representative, are not more than one year old. The chart lists all the contaminants detected in your drinking water that have Federal and State drinking water standards. Detected unregulated contaminants of interest are also included.

Drinking water source assessment

In accordance with the Federal Safe Drinking Water Act, an assessment of the drinking water sources for the City of Whittier was completed in December 2002. The assessment concluded that the City of Whittier’s sources are considered vulnerable to the following activities or facilities associated with contaminants detected in the water supply: research laboratories and parks. A copy of the complete assessment is available at the City of Whittier Public Works counter at 13230 Penn Street, Whittier, California 90602. You may request a summary of the assessment to be sent to you by contacting Customer Service at (562) 543-9330.

CITY OF WHITTIER 2019 ANNUAL WATER QUALITY TABLE

ORGANIC CHEMICALS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>MCLG (µg/l)</th>
<th>MRDLG (µg/l)</th>
<th>DLR (µg/l)</th>
<th>Results (µg/l)</th>
<th>Range (Min-Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHG (MCLG)</td>
<td>7.0</td>
<td>7.0</td>
<td>NA</td>
<td>7.7</td>
<td>6.2 - 8.1</td>
</tr>
<tr>
<td>pHG (MCL)</td>
<td>7.0</td>
<td>7.0</td>
<td>NA</td>
<td>7.7</td>
<td>6.2 - 8.1</td>
</tr>
<tr>
<td>pHG (MRDLG)</td>
<td>7.0</td>
<td>7.0</td>
<td>NA</td>
<td>7.7</td>
<td>6.2 - 8.1</td>
</tr>
</tbody>
</table>

NITROGEN CHEMICALS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>MCLG (µg/l)</th>
<th>MRDLG (µg/l)</th>
<th>DLR (µg/l)</th>
<th>Results (µg/l)</th>
<th>Range (Min-Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese (µg/l)</td>
<td>500</td>
<td>500</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>50</td>
<td>50</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>20</td>
<td>20</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>10</td>
<td>10</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
</tbody>
</table>

TOTAL DISINFECTION BYPRODUCTS

<table>
<thead>
<tr>
<th>Constituent</th>
<th>MCLG (µg/l)</th>
<th>MRDLG (µg/l)</th>
<th>DLR (µg/l)</th>
<th>Results (µg/l)</th>
<th>Range (Min-Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (µg/l)</td>
<td>15</td>
<td>15</td>
<td>NA</td>
<td>0.2</td>
<td><0.05 - 5.0</td>
</tr>
<tr>
<td>Lead (µg/l)</td>
<td>1.3</td>
<td>1.3</td>
<td>NA</td>
<td>0.2</td>
<td><0.05 - 5.0</td>
</tr>
<tr>
<td>Lead (µg/l)</td>
<td>0.57</td>
<td>0.57</td>
<td>NA</td>
<td>0.2</td>
<td><0.05 - 5.0</td>
</tr>
<tr>
<td>Lead (µg/l)</td>
<td>0.5</td>
<td>0.5</td>
<td>NA</td>
<td>0.2</td>
<td><0.05 - 5.0</td>
</tr>
</tbody>
</table>

UNREGULATED CHEMICALS REQUIRING MONITORING

<table>
<thead>
<tr>
<th>Constituent</th>
<th>MCLG (µg/l)</th>
<th>MRDLG (µg/l)</th>
<th>DLR (µg/l)</th>
<th>Results (µg/l)</th>
<th>Range (Min-Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese (µg/l)</td>
<td>500</td>
<td>500</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>50</td>
<td>50</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>20</td>
<td>20</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>10</td>
<td>10</td>
<td>NA</td>
<td>100</td>
<td>91 - 120</td>
</tr>
</tbody>
</table>

Notes

- **Notes:**
 - AL = Action Level
 - DLR = Detection Limit for Purposes of Reporting
 - MCL = Maximum Contaminant Level
 - MCLG = Maximum Contaminant Level Goal
 - MRDL = Maximum Residual Disinfectant Level
 - MRDLG = Maximum Residual Disinfectant Level Goal
 - NTU = Nephelometric Turbidity Units
 - µg/l = parts per billion or micrograms per liter
 - mg/l = parts per million or milligrams per liter
 - ng/l = parts per trillion or nanograms per liter
 - µg/l = parts per billion or micrograms per liter
 - mg/l = parts per million or milligrams per liter
 - µmho/cm = micromhos per centimeter
 - µg/l = parts per billion or micrograms per liter
 - mg/l = parts per million or milligrams per liter

- (a) The results reported in the table are average concentrations of the constituents detected in your drinking water during 2019 or from the most recent tests, except for Copper, Chromium, Trichloroethylene, TTHM, and HAA5, which are described below.
- (b) Samples were collected in the distribution system. For Chlorine Residual, TTHM, and HAA5, the running annual average is reported as "Results" while the maximum and minimum of the individual results are reported as "Range." The concentrations were recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the minimum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range." The concentrations were recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the maximum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range.
- (c) Over eight hundred (800) Coliform Bacteria samples were collected in the distribution system. For Chlorine Residual, TTHM, and HAA5, the running annual average is reported as "Results" while the maximum and minimum of the individual results are reported as "Range."
- (d) Sampling was performed at least once every 3 years. The DLR for TTHM and HAA5 are based on the minimum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range." The concentrations were recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the maximum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range."
- (e) Manganese was included as part of the unregulated chemicals requiring monitoring.
- (f) The results reported in the table are average concentrations of the constituents detected in your drinking water during 2019 or from the most recent tests, except for Copper, Chromium, Trichloroethylene, TTHM, and HAA5, which are described below.
- (g) Samples were collected in the distribution system. For Chlorine Residual, TTHM, and HAA5, the running annual average is reported as "Results" while the maximum and minimum of the individual results are reported as "Range." The concentrations were recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the minimum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range." The concentrations were recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the maximum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range."
- (h) Over eight hundred (800) Coliform Bacteria samples were collected in the distribution system in 2019. One of 10 samples was positive for Coliform Bacteria in 2019. The results are recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the minimum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range." The concentrations were recapped at the top by 2019. The DLR for TTHM and HAA5 are based on the maximum concentrations of the individual samples. The maximum concentrations of the individual samples are reported as "Range."
- (i) Manganese was included as part of the unregulated chemicals requiring monitoring.